
System Design and Methodology /

Embedded Systems Design

I. Modeling and Design of Embedded Systems

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet

Course Information

2 of 63

Web page: http://www.ida.liu.se/~TDTS07

http://www.ida.liu.se/~TDDI08

Examination: March 24th digital written exam

(see instructions linked on course page)

Labs (see course page and lesson notes)

Lecture notes: made available on the web page

http://www.ida.liu.se/~TDTS07
http://www.ida.liu.se/~TDDI08

Course Information

3 of 63

Recommended literature:

• Embedded System Design, by Peter Marwedel. Springer, 2nd edition 2011, 3d

edition 2018, 4th edition 2021. The 4th edition is open access and available

online via Springer.com

• Introduction to Embedded Systems – A Cyber-Physical Systems Approach,

Edward Lee and Sanjit Seshia, 1st edition 2011, 2nd edition 2017 ’ (available

online: LeeSeshia.org)

Course Information

4 of 63

Lessons&Labs:

Xiaopeng Teng

Institutionen för datavetenskap (IDA)

email: xiaopeng.teng@liu.se

mailto:xiaopeng.teng@liu.se
mailto:xiaopeng.teng@liu.se

EMBEDDED SYSTEMS AND THEIR DESIGN

5 of 63

1. What is an Embedded System

2. Characteristics of Embedded Applications

3. The Traditional Design Flow

4. An Example

5. A New Design Flow

6. The System Level

7. Course Topics

That’s how we use microprocessors

6 of 63

What is an Embedded System?

7 of 63

There are several definitions around:

◼ Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable

component but itself is not intended to be a general purpose computer.”

What is an Embedded System?

8 of 63

There are several definitions around:

◼ Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable

component but itself is not intended to be a general purpose computer.”

◼ Some focus on what it is built from:

“An embedded system is a collection of programmable parts surrounded by

ASICs and other standard components, that interact continuously with an

environment through sensors and actuators.”

What is an Embedded System?

9 of 63

Some of the main characteristics:

 Dedicated (not general purpose)

 Contains a programmable component

 Interacts (continuously) with the environment

Two Typical Implementation Architectures

10 of 63

Telecommunication System on Chip

LANRF

DSP core RAM RISC core RAM

Control
Logic

High-Speed
DSP Blocks

Programmable processor

ASIC block (Application Specific Integrated Circuit)

Standard block

Memory

Reconfigurable logic (FPGA)

dedicated
electronics

A/D
&

D/A

In
te

rf
a
c
e

Two Typical Implementation Architectures

11 of 63

Gateway

Gateway

CPU

RAM

FLASH

Distributed Embedded System (automotive application)

Actuators Sensors

Input/Output

Network Interface

The Software Component

12 of 63

Software running on the programmable processors:

 Application tasks

 Real-Time Operating System

 I/O drivers, Network protocols, Middleware

Characteristics of Embedded Applications

13 of 63

What makes them special?

▪ Like with “ordinary” applications, functionality and user interfaces are often

very complex.

But, in addition to this:

• Time constraints

• Power constraints

• Cost constraints

• Safety

• Time to market

Time constraints

14 of 63

◼ Embedded systems have to perform in real-time: if data is not ready by a

certain deadline, the system fails to perform correctly.

 Hard deadline: failure to meet leads to major hazards.

 Soft deadline: failure to meet is tolerated but affects quality of service.

Power constraints

15 of 63

◼ There are several reasons why low power/energy consumption is required:

 Cost aspects:

High energy consumption large electricity bill

expensive power supply

expensive cooling system

 Reliability

High power consumption high temperature that affects lifetime

 Battery life

High energy consumption short battery life time

 Environmental impact

Cost constraints

16 of 63

◼ Embedded systems are very often mass products in highly competitive

markets and have to be shipped at a low cost.

What we are interested in:

 Manufacturing cost

 Design cost

 Material cost (Bill of Material)

 Warranty cost

Safety

17 of 63

◼ Embedded systems are often used in life critical applications: avionics,

automotive electronics, nuclear plants, medical applications, military

applications, etc.

 Reliability and safety are major requirements. In

order to guarantee safety during design:

- Formal verification: mathematics-based methods to verify

certain properties of the designed system.

- Automatic synthesis:certain design steps are automatically

performed by design tools.

Short time to market

18 of 63

◼ In highly competitive markets it is critical to catch the market window: a short

delay with the product on the market can have catastrophic financial

consequences (even if the quality of the product is excellent).

 Design time has to be reduced!

- Good design methodologies.

- Efficient design tools.

- Reuse of previously designed and verified (hardw&softw) blocks.

- Good designers who understand both software and hardware!

Why is Design of Embedded Systems Difficult?

19 of 63

 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements,

systems have to be highly optimized.

Why is Design of Embedded Systems Difficult?

20 of 63

 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements,

systems have to be highly optimized.

Both hardware and software aspects have to be

considered simultaneously!

An Example

21 of 63

T1

T8

T7

T3

T5 T6

T4

T2

The system to be implemented is modelled as a task graph:

 a node represents a task (a unit of functionality

activated as response to a certain input and which

generates a certain output).

 an edge represents a precedence constraint and

data dependency between two tasks.

Period: 42 time units

 The task graph is activated every 42 time units

an activation has to terminate in time less than 42.

Cost limit: 8

 The total cost of the implemented system has to be

less than 8.

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

22 of 63

Fabrication

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

23 of 63

Fabrication

1. Start from some informal

specification of functionality

and a set of constraints

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

24 of 63

Fabrication

1. Start from some informal

specification of functionality

and a set of constraints

2. Generate a more formal model

of the functionality, based on

some modeling concept. Such

model is our task graph

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

25 of 63

Fabrication

1. Start from some informal

specification of functionality

and a set of constraints

2. Generate a more formal model

of the functionality, based on

some modeling concept. Such

model is our task graph

3. Simulate the model in order to

check the functionality. If

needed make adjustments.

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

26 of 63

Fabrication

1. Start from some informal

specification of functionality

and a set of constraints

2. Generate a more formal model

of the functionality, based on

some modeling concept. Such

model is our task graph

3. Simulate the model in order to

check the functionality. If needed

make adjustments.

4. Choose an architecture

(processor, buses, etc.) such

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.

System
Model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

27 of 63

Fabrication

1. Start from some informal

specification of functionality

and a set of constraints

2. Generate a more formal model

of the functionality, based on

some modeling concept. Such

model is our task graph

3. Simulate the model in order to

check the functionality. If needed

make adjustments.

4. Choose an architecture

(processor, buses, etc.) such

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.

5. Build a prototype and imple-

ment the system.

System
Model

Hardware and
Software

Implementation

Prototype

Fabrication

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

27 of 63

1. Start from some informal

specification of functionality

and a set of constraints

2. Generate a more formal model

of the functionality, based on

some modeling concept. Such

model is our task graph

3. Simulate the model in order to

check the functionality. If needed

make adjustments.

4. Choose an architecture

(processor, buses, etc.) such

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.

5. Build a prototype and imple-

ment the system.

6. Verify the system: neither time

nor power constraints are sat-

isfied!!!

System
Model

Hardware and
Software

Implementation

Prototype

Fabrication

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

29 of 63

Now you are in great trouble: you

have spent a lot of time and mon-

ey and nothing works!

 Go back to 4, choose a

new architecture and start

a new implementation.

 Or negotiate with the cus-

tomer on the constraints.

The Traditional Design Flow

30 of 63

◼ The consequences:

 Delays in the design process

- Increased design cost

- Delays in time to market missed market window

 High cost of failed prototypes

 Bad design decisions taken under time pressure

- Low quality, high cost products

System
Model

Hardware and
Software

Implementation

Prototype

Fabrication

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

More work
should be
done here!

Select Architecture

OK

n
o
t
O

K

31 of 63

Example

32 of 63

T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when

run on p1 is estimated.

T4

T6

Example

33 of 63

T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when

run on p1 is estimated.

T4

T6

task

- - - -
- - - -
- - - -

processor
arch. model

Estimator

WCET

Example

34 of 63

T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when

run on p1 is estimated.

T4

T6

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10

task

- - - -
- - - -
- - - -

processor
arch. model

Estimator

WCET

Example

35 of 63

T1

T3

T5 T6

T4

T7

T8

T2

T1 T2 T4 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

We generate a schedule:

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10

Embedded Systems Design Fö 1-2

Example

36 of 63

T1

T3

T5 T6

T2

T1 T2 T4 T3 T5 T6 T7 T8

T4

T7

Using the architecture with processor p1 we got a solution with:

T8

 Execution time: 58 > 42

 Cost: 6 < 8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

We have to try with another architecture!

We generate a schedule:

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10

Example

37 of 63

T1

T3T2
We look after a processor which is fast enough: p2

T5 T6

T4

T7

T8

Embedded Systems Design Fö 1-2

Example

38 of 63

T1

T3

T5 T6

T4

T7

T8

T2
We look after a processor which is fast enough: p2

For each task the WCET, when run on p2, is estimated.

Task WCET

T1 2

T2 3

T3 2

T4 3

T5 4

T6 6

T7 3

T8 5

Embedded Systems Design Fö 1-2

Example

39 of 63

T1

T8

T7

T3

T5 T6

T4

T2
We look after a processor which is fast enough: p2

For each task the WCET, when run on p2, is estimated.

Using the architecture with processor p2, after generating a

schedule, we got a solution with:

 Execution time: 28 < 42

 Cost: 15 > 8

We have to try with another architecture!

Task WCET

T1 2

T2 3

T3 2

T4 3

T5 4

T6 6

T7 3

T8 5

Example

40 of 63

T1

T8

T7

T3

T5 T6

T4

T2
We have to look for a multiprocessor solution

 In order to meet cost constraints try 2 cheap (and slow) ps:

p3: cost 3

p4: cost 2

interconnection bus: cost 1

p3 p4

Bus

Embedded Systems Design Fö 1-2

Example

41 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

We have to look for a multiprocessor solution

 In order to meet cost constraints try 2 cheap (and slow) ps:

p3: cost 3

p4: cost 2

interconnection bus: cost 1

For each task the WCET, when run on p3 and p4, is estimated.

p3 p4

Bus

Embedded Systems Design Fö 1-2

Example

42 of 63

T1

T8

T5

T7

T3

T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

Now we have to map the tasks to processors:

If communicating tasks are mapped to different processors, they have

to communicate over the bus.

Communication time has to be estimated; it depends on the amount of

bits transferred between the tasks and on the speed of the bus.

Estimated communication times:

C1-2: 1

C4-8: 1

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.

Embedded Systems Design Fö 1-2

Example

43 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

T1 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

bus

T2 T4

C1-2 C4-8

We generate a schedule:

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.

Estimated communication times:

 C1-2: 1,

 C4-8: 1

Embedded Systems Design Fö 1-2

Example

44 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.

Estimated communication times:

 C1-2: 1,

 C4-8: 1

T1 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

bus

T2 T4

C1-2 C4-8

We have exceeded the allowed execution time (42)!

We generate a schedule:

Embedded Systems Design Fö 1-2

Example

Try a new mapping; T5 to p4, in order to increase parallelism. Two

new communications are introduced, with estimated times:

C3-5: 2

C5-7: 1

45 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

We generate a schedule:

C1-2 C3-5 C4-8 C5-7

The execution time is still 62, as before!

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

bus

T5T2 T4

Embedded Systems Design Fö 1-2

Example

Try a new mapping; T5 to p4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

C3-5: 2

C5-7: 1

46 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

There exists a better schedule!

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

bus

T4T2 T5

C1-2 C5-7C3-5 C4-8

Embedded Systems Design Fö 1-2

Example

Try a new mapping; T5 to p4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

C3-5: 2

C5-7: 1

47 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

There exists a better schedule!

C1-2 C3-5

Execution time: 52 > 42

Cost: 6 < 8

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

bus

T4T2 T5

C5-7 C4-8

Embedded Systems Design Fö 1-2

Example

48 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceeded

p3 p4

Bus

Embedded Systems Design Fö 1-2

Example

49 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceed

 Implement part of the functionality in hardware as an ASIC Cost

of ASIC: 1

p3 p4

Bus

ASIC

Embedded Systems Design Fö 1-2

Example

50 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceed

 Implement part of the functionality in hardware as an ASIC

◼ New architecture Cost of

ASIC: 1

◼ Mapping

p3: T1, T3, T6, T7.

p4: T2, T4, T5.

ASIC: T8 with estimated WCET= 3

 New communication, with estimated time: C7-8: 1

p3 p4

Bus

ASIC

Embedded Systems Design Fö 1-2

Example

51 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Mapping

p3: T1, T3, T6, T7.

p4: T2, T4, T5.

ASIC: T8 with estimated WCET= 3

 New communication, with estimated time: C7-

8: 1

T1 T3 T6 T7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

ASIC

T2 T5 T4

T8

bus
C1-2 C3-5 C5-7 C4-8 C7-8

p3 p4

Bus

ASIC

Embedded Systems Design Fö 1-2

Example

52 of 63

T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

p3 p4

Bus

ASIC

Using this architecture we got a

solution with:

 Execution time: 41 < 42

 Cost: 7 < 8

T1 T3 T6 T7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4

ASIC

T2 T5 T4

T8

bus
C1-2 C3-5 C5-7 C4-8 C7-8

Example

53 of 63

What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Example

54 of 63

What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!!

Nothing has been built yet.

All decisions are based on simulation and estimation.

Example

55 of 63

What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!!

Nothing has been built yet.

All decisions are based on simulation and estimation.

◼ Now we can go and do the software and hardware implementation, with a high

degree of confidence that we get a correct prototype.

Functional
Simulation

System
model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Modeling

Testing

Arch. Selection

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled

model

OK

not OK not OK

What is the essential difference

compared to the “traditional”

design flow?

56 of 63

not OK
OK

Fabrication

Functional
Simulation

System
model

Hardware and
Software

Implementation

Prototype

Informal Specification,
Constraints

Modeling

Testing

Arch. Selection

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled

model

OK

not OK not OK

What is the essential difference

compared to the “traditional”

design flow?

57 of 63

 The inner loop which is per-

formed before the hardware/

software implementation.

This loop is performed several

times as part of the design

space exploration. Different

architectures, mappings and

schedules are explored, be- fore

the actual implementation and

prototyping.

 We get highly optimized good

quality solutions in short time.

We have a good chance that

the outer loop, including pro-

totyping, is not repeated.

not OK
OK

Fabrication

The Design Flow

58 of 63

◼ Formal verification

 It is impossible to do an exhaustive verification by simulation! Especially

for safety critical systems formal verification is needed.

◼ Hardware/Software codesign

 During the mapping/scheduling step we also decide what is going to be

executed on a programmable processor (software) and what is going into

hardware (ASIC, FPGA).

 During the implementation phase, hardware and software components have

to be developed in a coordinated way, keeping care of their consistency

(hardware/software cosimulation)

System model

Prototype

Fabrication

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Arch. Selection

System
architecture

Mapping

Estimation

Mapped and
scheduled model

Scheduling

OK

not OK

OK
not OK

Formal
Verification

Softw. model

not OK

Simulation

Formal
Verification

Hardw. model

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocks

Simulation

S
y

s
t

e
m

L
e

v
e

l
L

o
w

e
r

L
e

v
e

ls

Simulation

59 of 63

System Level Design Flow

60 of 63

This is what we are interested in, in this course!

System model

Informal Specification,
Constraints

Functional
Simulation

Modeling

Arch. Selection

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled model

OK

not OK

Formal
Verification

Softw. model

not OK

Simulation
Formal

Verification

Hardw. model
Simulation

S
y

s
t

e
m

L
e

v
e

l

Course Topics at a Glance

61 of 63

◼ Introduction: Embedded Systems and Their Design (just finished!)

◼ Models of Computation and Specification Languages

 Dataflow Models, Petri Nets, Discrete Event Models, Synchronous

Finite State Machines & Synchronous Languages, Globally

Asynchronous Locally Synchronous Systems,

Timed Automata, Hybrid Automata.

◼ Architectures and Platforms for Embedded Systems Design

 General Purpose vs. Application Specific Architectures,

Component and Platform-based Design, Reconfigurable

Systems, Functionality Mapping.

◼ Real-Time Embedded Systems

◼ System-Level Power/Energy Optimization

Lab Assignment 1

62 of 63

◼ Modeling and simulation with System C

Arch. Selectio

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled model

OK

not OK

Informal Specification,
Constraints

Modeling Functional
Simulation

n System model
Formal

Verification

Softw. model

not OK

Simulation

Formal
Verification

Hardw. modelSimulation

S
y

s
t

e
m

L
e

v
e

l

Lab Assignment 2

63 of 63

◼ Formal verification with UPPAAL (TDTS07 only)

System model

Functional
Simulation

Modeling

Arch. Selection

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled model

OK

not OK

Formal
Verification

Softw. model

not OK

Simulation

Formal
Verification

Hardw. modelSimulation

S
y

s
t

e
m

L
e

v
e

l

Informal Specification,

Constraints

Lab Assignment 3

64 of 63

◼ Design space exploration with an MPARM simulator.

System model

Functional
Simulation

Modeling

Arch. Selection

System
architecture

Mapping

Estimation Scheduling

Mapped and
scheduled model

OK

not OK

Formal
Verification

Softw. model Hardw. model

not OK

Simulation

Formal
Verification

Simulation

S
y

s
t

e
m

L
e

v
e

l

Informal Specification,

Constraints

	Slide 1: System Design and Methodology / Embedded Systems Design I. Modeling and Design of Embedded Systems
	Slide 2: Course Information
	Slide 3: Course Information
	Slide 4: Course Information
	Slide 5: EMBEDDED SYSTEMS AND THEIR DESIGN
	Slide 6: That’s how we use microprocessors
	Slide 7: What is an Embedded System?
	Slide 8: What is an Embedded System?
	Slide 9: What is an Embedded System?
	Slide 10: Two Typical Implementation Architectures
	Slide 11: Two Typical Implementation Architectures
	Slide 12: The Software Component
	Slide 13: Characteristics of Embedded Applications
	Slide 14: Time constraints
	Slide 15: Power constraints
	Slide 16: Cost constraints
	Slide 17: Safety
	Slide 18: Short time to market
	Slide 19: Why is Design of Embedded Systems Difficult?
	Slide 20: Why is Design of Embedded Systems Difficult?
	Slide 21: An Example
	Slide 22: Traditional Design Flow
	Slide 23: Traditional Design Flow
	Slide 24: Traditional Design Flow
	Slide 25: Traditional Design Flow
	Slide 26: Traditional Design Flow
	Slide 27: Traditional Design Flow
	Slide 28: Traditional Design Flow
	Slide 29: Traditional Design Flow
	Slide 30: The Traditional Design Flow
	Slide 31
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Example
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Example
	Slide 54: Example
	Slide 55: Example
	Slide 56: What is the essential difference compared to the “traditional” design flow?
	Slide 57: What is the essential difference compared to the “traditional” design flow?
	Slide 58: The Design Flow
	Slide 59
	Slide 60: System Level Design Flow
	Slide 61: Course Topics at a Glance
	Slide 62: Lab Assignment 1
	Slide 63: Lab Assignment 2
	Slide 64: Lab Assignment 3

