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Course Information

Recommended literature:

Embedded System Design, by Peter Marwedel. Springer, 2nd edition 2011, 3d
edition 2018, 4th edition 2021. The 4th edition is open access and available
online via Springer.com

Introduction to Embedded Systems — A Cyber-Physical Systems Approach,
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EMBEDDED SYSTEMS AND THEIR DESIGN

1. What is an Embedded System

2. Characteristics of Embedded Applications
3. The Traditional Design Flow

4. An Example

5. A New Design Flow

6. The System Level

7. Course Topics
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That's how we use microprocessors

General purpose systems Embedded systems

Microprocessor
market shares
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What is an Embedded System?

There are several definitions around:

m  Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable
component but itself is not intended to be a general purpose computer.”
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What is an Embedded System?

There are several definitions around:

m  Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable
component but itself is not intended to be a general purpose computer.”

m Some focus on what it is built from:

“An embedded system is a collection of programmable parts surrounded by
ASICs and other standard components, that interact continuously with an
environment through sensors and actuators.”
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What is an Embedded System?

Some of the main characteristics:

0 Dedicated (not general purpose)
0 Contains a programmable component

ad Interacts (continuously) with the environment
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Two Typical Implementation Architectures

Telecommunication System on Chip
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Two Typical Implementation Architectures

Distributed Embedded System (automotive application)
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The Software Component

Software running on the programmable processors:

0 Application tasks
0 Real-Time Operating System

o |/O drivers, Network protocols, Middleware
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Characteristics of Embedded Applications

What makes them special?

Like with “ordinary” applications, functionality and user interfaces are often
very complex.

But, in addition to this:
Time constraints
Power constraints
Cost constraints
Safety

Time to market
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Time constraints

m Embedded systems have to perform in real-time: if data is not ready by a
certain deadline, the system fails to perform correctly.

d Hard deadline: failure to meet leads to major hazards.

a Soft deadline: failure to meet is tolerated but affects quality of service.
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Power constraints

There are several reasons why low power/energy consumption is required:

0 Cost aspects:

High energy consumption = large electricity bill
expensive power supply
expensive cooling system

7 Reliability
High power consumption = high temperature that affects lifetime

o Battery life
High energy consumption = short battery life time

a9 Environmental impact
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Cost constraints

Embedded systems are very often mass products in highly competitive
markets and have to be shipped at a low cost.

What we are interested in:
0 Manufacturing cost
0 Design cost

0 Material cost (Bill of Material)

d Warranty cost
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Safety

Embedded systems are often used in life critical applications: avionics,
automotive electronics, nuclear plants, medical applications, military

applications, etc.

0 Reliability and safety are major requirements. In
order to guarantee safety during design:

Formal verification: mathematics-based methods to verify
certain properties of the designed system.

- Automatic synthesis:certain design steps are automatically
performed by design tools.
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Short time to market

m |n highly competitive markets it is critical to catch the market window: a short
delay with the product on the market can have catastrophic financial
consequences (even if the quality of the product is excellent).

7 Design time has to be reduced!

- Good design methodologies.

- Efficient design tools.

- Reuse of previously designed and verified (hardw&softw) blocks.
- Good designers who understand both software and hardware!
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Why is Design of Embedded Systems Difficult?

a High Complexity

0 Strong time&power constraints

In order to achieve these requirements,

0 Low cost systems have to be highly optimized.

0 Short time to market

0 Safety critical systems
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Why is Design of Embedded Systems Difficult?

a High Complexity

0 Strong time&power constraints
7 Low cost

a9 Short time to market

0 Safety critical systems

In order to achieve these requirements,
systems have to be highly optimized.

!

(Both hardware and software aspects have to be)

considered simultaneously!
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An Example

The system to be implemented is modelled as a task graph:
O a node represents a task (a unit of functionality
activated as response to a certain input and which
generates a certain output).

0 an edge represents a precedence constraint and
data dependency between two tasks.

Period: 42 time units
0 The task graph is activated every 42 time units =

an activation has to terminate in time less than 42.

Cost limit: 8
a The total cost of the implemented system has to be

less than 8.
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you hope, time and pow- er
constraints are fulfilled.

! 5. Build a prototype and imple-
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. Generate a more formal model

of the functionality, based on
some modeling concept. Such
model is our task graph

. Simulate the model in order to

check the functionality. If needed
make adjustments.

. Choose an architecture
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you hope, time and pow- er
constraints are fulfilled.
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ment the system.
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The Traditional Design Flow

m The consequences:

7 Delays in the design process
- Increased design cost

- Delays in time to market = missed market window
0 High cost of failed prototypes

7 Bad design decisions taken under time pressure

- Low quality, high cost products
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Example

We have the system model (task graph) which has been
validated by simulation.

We decide on a certain uprocessor up1, with cost 6.

For each task the worst-case execution time (WCET) when
run on up1 is estimated.
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Example

We have the system model (task graph) which has been
validated by simulation.

We decide on a certain uprocessor up1, with cost 6.
For each task the worst-case execution time (WCET) when

run on up1 is estimated.
task

{_V_C
S
Estimator le— HProcessor
l arch. model

WCET
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Example

m We have the system model (task graph) which has been
validated by simulation.

m  We decide on a certain uprocessor up1, with cost 6.

m Foreach task the worst-case execution time (WCET) when
run on up1 is estimated.

Task | WCET task

T, | 6

T, | 4 T

T, | 7 7
8

Estimator ._Eprocessor

Ts arch. model
T 12 l .
N WCET

Ty | 10
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Example

We generate a schedule:

Time 0 2 4 6 §19 121fl1‘61‘55292‘22?12‘622‘%3(‘)3‘234‘136‘32‘%494‘244‘14‘64i‘§5(‘)5%54‘156‘5§6(‘)62‘64‘

T, | 12 T4 T Ts Te T, Tg

T, | 4
T, | 6
T, | 4
T, | 7
Ts | 8
Tg | 12
T, | 7
Tg | 10
350f 63




Example

We generate a schedule:

Time 0 2 4 6 §IP 121fl1‘61‘55292‘22?12‘622‘%3(‘)3‘234‘136‘32‘%494‘244‘14‘64i‘§5(‘)5%54‘156‘58‘6(‘)62‘64‘

T, | 12 T4 T Ts Te T, Tg

Using the architecture with uprocessor up1 we got a solution with:

a Execution time: 58 > 42 &

T, | 4 J Cost:6<8

T | 6 ‘
T, | 4

7

8

Ty We have to try with another architecture!
Ts

Te | 12

T, 7
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Example

We look after a uprocessor which is fast enough: up2
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Example

We look after a uprocessor which is fast enough: up2

For each task the WCET, when run on up2, is estimated.
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Example

We look after a uprocessor which is fast enough: up2

For each task the WCET, when run on up2, is estimated.

Using the architecture with uprocessor up2, after generating a
schedule, we got a solution with:

0 Execution time: 28 < 42

0 Cost: 15> 8 &
T, 2
1 |
T3 2 We have to try with another architecture!
Ty 3
Ts 4
T 6
T, 3
T8 > 39 of 63




Example

We have to look for a multiprocessor solution

a In order to meet cost constraints try 2 cheap (and slow) ups:

up3: cost 3
up4: cost 2
interconnection bus: cost 1

up3

¢

np4

Bus

[40 of 63




Example

We have to look for a multiprocessor solution

a In order to meet cost constraints try 2 cheap (and slow) ups:

up3: cost 3
up4: cost 2
interconnection bus: cost 1

pp3 np4

¢ ¢ Bus

For each task the WCET, when run on up3 and up4, is estimated.
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Example

Now we have to map the tasks to processors:

Mp3 Tl' T3, T5, T6' T7, T8'
Hp4 TZ) T4-'

If communicating tasks are mapped to different processors, they have

to communicate over the bus.

Communication time has to be estimated; it depends on the amount of
bits transferred between the tasks and on the speed of the bus.

Estimated communication times:
C1_22 1
C4_8I 1

42 of 63



Example

Mp3 Tl' T3,T5, T6l T7, T8'
Hp4 Tz, T4.

Estimated communication times:

Cq2: 1,
C4_8Z 1

We generate a schedule:

Time O 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T Sy Sy M S

up3 LT | 13 Is T 1y Ty
np4 i) Ty
bus [ ]

Cia Cag
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Example

Mp3 Tl' T3,T5, T6l T7, T8'
Hp4 Tz, T4.

Estimated communication times:

Cq2: 1,
C4_8Z 1

We generate a schedule:

Time 0 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T Sy Sy M S

T, 5 6
T, | 7 9
T, 5 6
T, | 8 10
Ts | 10 11
Te | 17 21
T, | 10 14
Tg | 15 19

Hp3
up4

We have exceeded the allowed execution time (42)!

T3

Ts

To

T;

Ty

T

Ty

F

!

Cio

Cag
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2

\

4)

Task

T, 5 6
T, 7 9
T; 5 6
Ty 8 10
Ts 10 11
Te 17 21
T 10 14
Tg 15 19

Example

Try a new mapping; Ts to up4, in order to increase parallelism. Two

new communications are introduced, with estimated times:

C3_5Z 2
C5_7Z 1

We generate a schedule:

Time 0 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T S iy Sy A S

up3 [T I T Te T, Ty
np4 1 Ty Ts
bus [ ] ]

Ciz G Cy8 Cs.7

The execution time is still 62, as before!
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Example

Try a new mapping; Ts to up4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

C3_5Z 2
C5_7Z 1

(There exists a better schedule! )

Time O 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T S iy Sy A S

upd LT | 13 To T, Ty
Mp 4 T2 T5 T4
bus [ ] ]

Ciz G Cs.7 Cy8
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Example

Try a new mapping; Ts to up4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

D\
Y | Cs.5: 2

2 Cs.7: 1

8 6’ here exists a better schedule! )

e 1 0246 22 24 05

Tas | Time © 240 810 214161820 22426 20303 3436 30 40 4445 48 50 52343058 0 2
T, 3 6 up3 N Ts T, Tq
22 ’ ? up4 T Ts Ty
T 5 6
Ts | 10 11
Te | 17 21 Execution time: 52 > 42 &?
T; | 10 14 Cost:6 <8
Tg 15 19




Example

up3 np4

¢ ¢ Bus

m Possible solutions:

a9 Change pproc. up3 with faster one = cost limits exceeded
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Example

up3 up4

¢ ¢ Bus
$

ASIC

0 Change pproc. up3 with faster one = cost limits exceed

m Possible solutions:

o Implement part of the functionality in hardware as an ASIC Cost
of ASIC: 1
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Example

up3 up4

¢ ¢ Bus
$

ASIC

0 Change pproc. up3 with faster one = cost limits exceed
o Implement part of the functionality in hardware as an ASIC

Possible solutions:

New architecture Cost of
ASIC: 1

Mapping
up3: T1, T3, T6, T7.
up4: To, Ty, T5.
ASIC: Tg with estimated WCET= 3
a9 New communication, with estimated time: C7_g: 1
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WCET
Task
up3 | up4
T, 5 6
T, 7 9
Ts 5 6
Ty 8 10
Ts 10 11
T 17 21
T, 10 14
Ty 15 19

m  Mapping

up3: T4, T3, Te, T7.

Example

up3

up4

¢ Bus

upd: To, Ty, Ts.
ASIC: Tg with estimated WCET=3

¢

ASIC

0 New communication, with estimated time: C7.
8. 1

4 6 810 1‘2 lfl 1‘6 1§ 29 %2 %4 2§ 2§ 39 3? 3f1 3§ 3§ 49 4? 4fl 4§ 4§ 59 5? Sfl 5§ 5§ 69 6% 64}
| |

To

T;

Ts

14

Cs.7
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T
8
WCET

Task

up3 | up4
T, 5 6
T, 7 9
Ts 5 6
Ty 8 10
Ts 10 11
T 17 21
T, 10 14
Ty 15 19

solution with:

¢

ASIC

Using this architecture we got a

0 Execution time: 41 <42

¢ Bus

0 Cost: 7<8
Time 0 2 4 6 8101214 161820 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 6
up3 T, T, To T,
up4 T, Ts Ty
ASIC T
bus D D 52 of 63
Ciz2 Css Cs7 Cys Crg



What did we achieve? Example

a9 We have selected an architecture.
7 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.
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What did we achieve? Example

0 We have selected an architecture.
0 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.

(

-

" Extremely important!!!

Nothing has been built yet.

\AII decisions are based on simulation and estimation.

-
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What did we achieve? Example

0 We have selected an architecture.
0 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.

~ N
" Extremely important!!! )

Nothing has been built yet.

All decisions are based on simulation and estimation.

- )

- J

m  Now we can go and do the software and hardware implementation, with a high
degree of confidence that we get a correct prototype.
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Informal Specification,
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The Design Flow

m Formal verification

0 Itis impossible to do an exhaustive verification by simulation! Especially
for safety critical systems formal verification is needed.

m Hardware/Software codesign

a3 During the mapping/scheduling step we also decide what is going to be
executed on a programmable processor (software) and what is going into
hardware (ASIC, FPGA).

a3 During the implementation phase, hardware and software components have
to be developed in a coordinated way, keeping care of their consistency
(hardware/software cosimulation)
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System Level ——»

|/

System Level Design Flow
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Course Topics at a Glance

Introduction: Embedded Systems and Their Design (just finished!)

Models of Computation and Specification Languages
0 Dataflow Models, Petri Nets, Discrete Event Models, Synchronous
Finite State Machines & Synchronous Languages, Globally
Asynchronous Locally Synchronous Systems,

Timed Automata, Hybrid Automata.

Architectures and Platforms for Embedded Systems Design

0 General Purpose vs. Application Specific Architectures,
Component and Platform-based Design, Reconfigurable
Systems, Functionality Mapping.

Real-Time Embedded Systems
System-Level Power/Energy Optimization
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Lab Assignment 1

Modeling and simulation with System C
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Lab Assignment 2

Formal verification with UPPAAL (TDTSO07 only)
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Lab Assignment 3

Design space exploration with an MPARM simulator.
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