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1. What is an Embedded System

2. Characteristics of Embedded Applications

3. The Traditional Design Flow

4. An Example

5. A New Design Flow
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There are several definitions around:

◼ Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable 

component but itself is not intended to be a general purpose computer.”
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There are several definitions around:

◼ Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable 

component but itself is not intended to be a general purpose computer.”

◼ Some focus on what it is built from:

“An embedded system is a collection of programmable parts surrounded by 

ASICs and other standard components, that interact continuously with an 

environment through sensors and actuators.”



What is an Embedded System?

9 of 63

Some of the main characteristics:

 Dedicated (not general purpose)

 Contains a programmable component

 Interacts (continuously) with the environment
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Gateway
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RAM

FLASH

Distributed Embedded System (automotive application)
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The Software Component
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Software running on the programmable processors:

 Application tasks

 Real-Time Operating System

 I/O drivers, Network protocols, Middleware
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What makes them special?

▪ Like with “ordinary” applications, functionality and user interfaces are often

very complex.

But, in addition to this:

• Time constraints

• Power constraints

• Cost constraints

• Safety

• Time to market



Time constraints
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◼ Embedded systems have to perform in real-time: if data is not ready by a 

certain deadline, the system fails to perform correctly.

 Hard deadline: failure to meet leads to major hazards.

 Soft deadline: failure to meet is tolerated but affects quality of service.
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◼ There are several reasons why low power/energy consumption is required:

 Cost aspects:

High energy consumption large electricity bill

expensive power supply 

expensive cooling system

 Reliability

High power consumption high temperature that affects lifetime

 Battery life

High energy consumption short battery life time

 Environmental impact
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◼ Embedded systems are very often mass products in highly competitive 

markets and have to be shipped at a low cost.

What we are interested in:

 Manufacturing cost

 Design cost

 Material cost (Bill of Material)

 Warranty cost



Safety
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◼ Embedded systems are often used in life critical applications: avionics, 

automotive electronics, nuclear plants, medical applications, military 

applications, etc.

 Reliability and safety are major requirements. In

order to guarantee safety during design:

- Formal verification: mathematics-based methods to verify 

certain properties of the designed system.

- Automatic synthesis:certain design steps are automatically 

performed by design tools.



Short time to market
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◼ In highly competitive markets it is critical to catch the market window: a short 

delay with the product on the market can have catastrophic financial 

consequences (even if the quality of the product is excellent).

 Design time has to be reduced!

- Good design methodologies.

- Efficient design tools.

- Reuse of previously designed and verified (hardw&softw) blocks.

- Good designers who understand both software and hardware!



Why is Design of Embedded Systems Difficult?
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 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements, 

systems have to be highly optimized.
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 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements, 

systems have to be highly optimized.

Both hardware and software aspects have to be 

considered simultaneously!



An Example

21 of 63

T1

T8

T7

T3

T5 T6

T4

T2

The system to be implemented is modelled as a task graph:

 a node represents a task (a unit of functionality 

activated as response to a certain input and which 

generates a certain output).

 an edge represents a precedence constraint and 

data dependency between two tasks.

Period: 42 time units

 The task graph is activated every 42 time units

an activation has to terminate in time less than 42.

Cost limit: 8

 The total cost of the implemented system has to be

less than 8.
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Fabrication



System 
Model

Hardware and 
Software 

Implementation

Prototype

Informal Specification, 
Constraints

Functional 
Simulation

Modeling

Testing

Select Architecture

OK

n
o
t
O

K
Traditional Design Flow

23 of 63

Fabrication

1. Start from some informal 

specification of functionality 

and a set of constraints
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Fabrication

1. Start from some informal 

specification of functionality 

and a set of constraints

2. Generate a more formal model 

of the functionality, based on 

some modeling concept. Such

model is our task graph
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Fabrication

1. Start from some informal 

specification of functionality 

and a set of constraints

2. Generate a more formal model 

of the functionality, based on 

some modeling concept. Such

model is our task graph

3. Simulate the model in order to 

check the functionality. If 

needed make adjustments.
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Fabrication

1. Start from some informal 

specification of functionality 

and a set of constraints

2. Generate a more formal model 

of the functionality, based on 

some modeling concept. Such

model is our task graph

3. Simulate the model in order to 

check the functionality. If needed

make adjustments.

4. Choose an architecture 

(processor, buses, etc.) such 

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.
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Fabrication

1. Start from some informal 

specification of functionality 

and a set of constraints

2. Generate a more formal model 

of the functionality, based on 

some modeling concept. Such

model is our task graph

3. Simulate the model in order to 

check the functionality. If needed

make adjustments.

4. Choose an architecture 

(processor, buses, etc.) such 

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.

5. Build a prototype and imple-

ment the system.
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1. Start from some informal 

specification of functionality 

and a set of constraints

2. Generate a more formal model 

of the functionality, based on 

some modeling concept. Such

model is our task graph

3. Simulate the model in order to 

check the functionality. If needed

make adjustments.

4. Choose an architecture 

(processor, buses, etc.) such 

that cost limits are satisfied and,

you hope, time and pow- er

constraints are fulfilled.

5. Build a prototype and imple-

ment the system.

6. Verify the system: neither time

nor power constraints are sat-

isfied!!!
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Now you are in great trouble: you

have spent a lot of time and mon-

ey and nothing works!

 Go back to 4, choose a 

new architecture and start 

a new implementation.

 Or negotiate with the cus-

tomer on the constraints.



The Traditional Design Flow
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◼ The consequences:

 Delays in the design process

- Increased design cost

- Delays in time to market missed market window

 High cost of failed prototypes

 Bad design decisions taken under time pressure

- Low quality, high cost products
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Example

32 of 63

T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been 

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when 

run on p1 is estimated.

T4

T6
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T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been 

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when 

run on p1 is estimated.

T4

T6

task

- - - -
- - - -
- - - -

processor 
arch. model

Estimator

WCET
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T1

T8

T7

T3T2

T5

◼ We have the system model (task graph) which has been 

validated by simulation.

◼ We decide on a certain processor p1, with cost 6.

◼ For each task the worst-case execution time (WCET) when 

run on p1 is estimated.

T4

T6

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10

task

- - - -
- - - -
- - - -

processor 
arch. model

Estimator

WCET
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T1

T3

T5 T6

T4

T7

T8

T2

T1 T2 T4 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

We generate a schedule:

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10
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T1

T3

T5 T6

T2

T1 T2 T4 T3 T5 T6 T7 T8

T4

T7

Using the architecture with processor p1 we got a solution with:

T8

 Execution time: 58 > 42

 Cost: 6 < 8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

We have to try with another architecture!

We generate a schedule:

Task WCET

T1 4

T2 6

T3 4

T4 7

T5 8

T6 12

T7 7

T8 10
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T1

T3T2
We look after a processor which is fast enough: p2

T5 T6

T4

T7

T8
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T1

T3

T5 T6

T4

T7

T8

T2
We look after a processor which is fast enough: p2

For each task the WCET, when run on p2, is estimated.

Task WCET

T1 2

T2 3

T3 2

T4 3

T5 4

T6 6

T7 3

T8 5
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T1

T8

T7

T3

T5 T6

T4

T2
We look after a processor which is fast enough: p2

For each task the WCET, when run on p2, is estimated.

Using the architecture with processor p2, after generating a 

schedule, we got a solution with:

 Execution time: 28 < 42

 Cost: 15 > 8

We have to try with another architecture!

Task WCET

T1 2

T2 3

T3 2

T4 3

T5 4

T6 6

T7 3

T8 5
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T1

T8
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T3

T5 T6
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T2
We have to look for a multiprocessor solution

 In order to meet cost constraints try 2 cheap (and slow) ps:

p3: cost 3

p4: cost 2

interconnection bus: cost 1

p3 p4

Bus
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

We have to look for a multiprocessor solution

 In order to meet cost constraints try 2 cheap (and slow) ps:

p3: cost 3

p4: cost 2

interconnection bus: cost 1

For each task the WCET, when run on p3 and p4, is estimated.

p3 p4

Bus
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T1

T8

T5

T7

T3

T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

Now we have to map the tasks to processors:

If communicating tasks are mapped to different processors, they have

to communicate over the bus.

Communication time has to be estimated; it depends on the amount of

bits transferred between the tasks and on the speed of the bus.

Estimated communication times: 

C1-2: 1

C4-8: 1

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

T1 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

bus

T2 T4

C1-2 C4-8

We generate a schedule:

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.

Estimated communication times: 

 C1-2: 1, 

 C4-8: 1
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

p3: 𝑇1, 𝑇3, 𝑇5, 𝑇6, 𝑇7, 𝑇8.

p4: 𝑇2, 𝑇4.

Estimated communication times: 

 C1-2: 1, 

 C4-8: 1

T1 T3 T5 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

bus

T2 T4

C1-2 C4-8

We have exceeded the allowed execution time (42)!

We generate a schedule:
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Try a new mapping; T5 to p4, in order to increase parallelism. Two

new communications are introduced, with estimated times:

C3-5: 2

C5-7: 1
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

We generate a schedule:

C1-2 C3-5 C4-8 C5-7

The execution time is still 62, as before!

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

bus

T5T2 T4
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C5-7: 1
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

There exists a better schedule!

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

bus

T4T2 T5

C1-2 C5-7C3-5 C4-8
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

There exists a better schedule!

C1-2 C3-5

Execution time: 52 > 42

Cost: 6 < 8

T1 T3 T6 T7 T8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

bus

T4T2 T5

C5-7 C4-8
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceeded

p3 p4

Bus
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceed

 Implement part of the functionality in hardware as an ASIC Cost

of ASIC: 1

p3 p4

Bus

ASIC
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Possible solutions:

 Change proc. p3 with faster one cost limits exceed

 Implement part of the functionality in hardware as an ASIC

◼ New architecture Cost of

ASIC: 1

◼ Mapping

p3: T1, T3, T6, T7.

p4: T2, T4, T5.

ASIC: T8 with estimated WCET= 3

 New communication, with estimated time: C7-8: 1

p3 p4

Bus

ASIC
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

◼ Mapping

p3: T1, T3, T6, T7.

p4: T2, T4, T5.

ASIC: T8 with estimated WCET= 3

 New communication, with estimated time: C7-

8: 1

T1 T3 T6 T7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

ASIC

T2 T5 T4

T8

bus
C1-2 C3-5 C5-7 C4-8 C7-8

p3 p4

Bus

ASIC
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T1

T8

T7

T3

T5 T6

T4

T2

Task
WCET

p3 p4

T1 5 6

T2 7 9

T3 5 6

T4 8 10

T5 10 11

T6 17 21

T7 10 14

T8 15 19

p3 p4

Bus

ASIC

Using this architecture we got a 

solution with:

 Execution time: 41 < 42

 Cost: 7 < 8

T1 T3 T6 T7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64Time

p3

p4 

ASIC

T2 T5 T4

T8

bus
C1-2 C3-5 C5-7 C4-8 C7-8
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What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.
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What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!! 

Nothing has been built yet.

All decisions are based on simulation and estimation.
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What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!! 

Nothing has been built yet.

All decisions are based on simulation and estimation.

◼ Now we can go and do the software and hardware implementation, with a high 

degree of confidence that we get a correct prototype.
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 The inner loop which is per-

formed before the hardware/

software implementation.

This loop is performed several 

times as part of the design 

space exploration. Different 

architectures, mappings and 

schedules are explored, be- fore

the actual implementation and

prototyping.

 We get highly optimized good 

quality solutions in short time. 

We have a good chance that 

the outer loop, including pro-

totyping, is not repeated.

not OK
OK

Fabrication



The Design Flow
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◼ Formal verification

 It is impossible to do an exhaustive verification by simulation! Especially

for safety critical systems formal verification is needed.

◼ Hardware/Software codesign

 During the mapping/scheduling step we also decide what is going to be 

executed on a programmable processor (software) and what is going into

hardware (ASIC, FPGA).

 During the implementation phase, hardware and software components have

to be developed in a coordinated way, keeping care of their consistency

(hardware/software cosimulation)
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System Level Design Flow
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This is what we are interested in, in this course!
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Course Topics at a Glance
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◼ Introduction: Embedded Systems and Their Design (just finished!)

◼ Models of Computation and Specification Languages

 Dataflow Models, Petri Nets, Discrete Event Models, Synchronous

Finite State Machines & Synchronous Languages, Globally

Asynchronous Locally Synchronous Systems,

Timed Automata, Hybrid Automata.

◼ Architectures and Platforms for Embedded Systems Design

 General Purpose vs. Application Specific Architectures,

Component and Platform-based Design, Reconfigurable

Systems, Functionality Mapping.

◼ Real-Time Embedded Systems

◼ System-Level Power/Energy Optimization



Lab Assignment 1
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◼ Modeling and simulation with System C
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Lab Assignment 2
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◼ Formal verification with UPPAAL (TDTS07 only)
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Lab Assignment 3
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◼ Design space exploration with an MPARM simulator.
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