System Design and Methodology /
Embedded Systems Design

|. Modeling and Design of Embedded Systems

TDTS07/TDDIO8
VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen for datavetenskap (IDA)
Linkopings universitet

1 of 63

Course Information

Web page: htip://www.ida.liu.se/~TDTS07
http://www.ida.liu.se/~TDDI08

Examination: March 24th digital written exam
(see instructions linked on course page)

Labs (see course page and lesson notes)

Lecture notes: made available on the web page

2 of 63

http://www.ida.liu.se/~TDTS07
http://www.ida.liu.se/~TDDI08

Course Information

Recommended literature:

Embedded System Design, by Peter Marwedel. Springer, 2nd edition 2011, 3d
edition 2018, 4th edition 2021. The 4th edition is open access and available
online via Springer.com

Introduction to Embedded Systems — A Cyber-Physical Systems Approach,

Edward Lee and Sanjit Seshia, 1st edition 2011, 2nd edition 2017 ’ (available
online: LeeSeshia.orQ)

3 of 63

Course Information

Lessons&Labs:

Xiaopeng Teng
Institutionen for datavetenskap (IDA)
email: xiaopeng.teng@liu.se

4 of 63

mailto:xiaopeng.teng@liu.se
mailto:xiaopeng.teng@liu.se

EMBEDDED SYSTEMS AND THEIR DESIGN

1. What is an Embedded System

2. Characteristics of Embedded Applications
3. The Traditional Design Flow

4. An Example

5. A New Design Flow

6. The System Level

7. Course Topics

5of 63

That's how we use microprocessors

General purpose systems Embedded systems

Microprocessor
market shares

6 of 63

What is an Embedded System?

There are several definitions around:

m Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable
component but itself is not intended to be a general purpose computer.”

7 of 63

What is an Embedded System?

There are several definitions around:

m Some definitions highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable
component but itself is not intended to be a general purpose computer.”

m Some focus on what it is built from:

“An embedded system is a collection of programmable parts surrounded by
ASICs and other standard components, that interact continuously with an
environment through sensors and actuators.”

8 of 63

What is an Embedded System?

Some of the main characteristics:

0 Dedicated (not general purpose)
0 Contains a programmable component

ad Interacts (continuously) with the environment

9 of 63

Two Typical Implementation Architectures

Telecommunication System on Chip

RF <

DSP core || RAM RISC core || RAM

» LAN

3 S 5 - S
R R R R Y
BB, T S i D \\-‘\‘\\\\u\\‘\\‘\\\ I~

\\}f prssed

\\ NN o

I o]
N

Programmable processor
ASIC block (Application Specific Integrated Circuit) } dedicated

Standard block Jelectronics

Memory
Reconfigurable logic (FPGA)

10 of 63

Two Typical Implementation Architectures

Distributed Embedded System (automotive application)

Actuators Sensors

&
-,: :
:-:«)-'-:~ ’-

2‘1’ e A

| TPUOUIBUE AN

CPU
FLASH
..,,..;s(, AR
ééﬁé NetWQrK,lnterfa%q &;@g

Gateway

Gateway

11 of 63

The Software Component

Software running on the programmable processors:

0 Application tasks
0 Real-Time Operating System

o |/O drivers, Network protocols, Middleware

12 of 63

Characteristics of Embedded Applications

What makes them special?

Like with “ordinary” applications, functionality and user interfaces are often
very complex.

But, in addition to this:
Time constraints
Power constraints
Cost constraints
Safety

Time to market

13 of 63

Time constraints

m Embedded systems have to perform in real-time: if data is not ready by a
certain deadline, the system fails to perform correctly.

d Hard deadline: failure to meet leads to major hazards.

a Soft deadline: failure to meet is tolerated but affects quality of service.

14 of 63

Power constraints

There are several reasons why low power/energy consumption is required:

0 Cost aspects:

High energy consumption = large electricity bill
expensive power supply
expensive cooling system

7 Reliability
High power consumption = high temperature that affects lifetime

o Battery life
High energy consumption = short battery life time

a9 Environmental impact

15 of 63

Cost constraints

Embedded systems are very often mass products in highly competitive
markets and have to be shipped at a low cost.

What we are interested in:
0 Manufacturing cost
0 Design cost

0 Material cost (Bill of Material)

d Warranty cost

16 of 63

Safety

Embedded systems are often used in life critical applications: avionics,
automotive electronics, nuclear plants, medical applications, military

applications, etc.

0 Reliability and safety are major requirements. In
order to guarantee safety during design:

Formal verification: mathematics-based methods to verify
certain properties of the designed system.

- Automatic synthesis:certain design steps are automatically
performed by design tools.

17 of 63

Short time to market

m |n highly competitive markets it is critical to catch the market window: a short
delay with the product on the market can have catastrophic financial
consequences (even if the quality of the product is excellent).

7 Design time has to be reduced!

- Good design methodologies.

- Efficient design tools.

- Reuse of previously designed and verified (hardw&softw) blocks.
- Good designers who understand both software and hardware!

18 of 63

Why is Design of Embedded Systems Difficult?

a High Complexity

0 Strong time&power constraints

In order to achieve these requirements,

0 Low cost systems have to be highly optimized.

0 Short time to market

0 Safety critical systems

19 of 63

Why is Design of Embedded Systems Difficult?

a High Complexity

0 Strong time&power constraints
7 Low cost

a9 Short time to market

0 Safety critical systems

In order to achieve these requirements,
systems have to be highly optimized.

!

(Both hardware and software aspects have to be)

considered simultaneously!

20 of 63

An Example

The system to be implemented is modelled as a task graph:
O a node represents a task (a unit of functionality
activated as response to a certain input and which
generates a certain output).

0 an edge represents a precedence constraint and
data dependency between two tasks.

Period: 42 time units
0 The task graph is activated every 42 time units =

an activation has to terminate in time less than 42.

Cost limit: 8
a The total cost of the implemented system has to be

less than 8.

21 of 63

*(Informal Specification,

Const_raints

'

- - - Modeling

/~ System \/

-

Mo_del

'

_\

‘\\

Traditional Design Flow

Functional
Simulation

Select Architecture

—

Hardware and
— Software

Implementation

x _

E l

Ie

(e

Testing |«— Prototype)

lOK
Fabrication

22 of 63

not OK

(Informal Specification,)

Constraints

'

Modeling

/"~ System \/

o

Mo_del

'

)

"\\

Functional
Simulation

Select Architecture

Hardware and
Software
Implementation

Testing

|

~—C

lOK

Prototype

)

Fabrication

Traditional Design Flow

1. Start from some informal
specification of functionality
and a set of constraints

23 of 63

- - ——— -

not OK

- --% Modeling V\\\
l A Y

— » Select Architecture

— Software

- Informal Specification,
Const_raints

oo

Functional
Simulation

System
Model

Hardware and

Implementation

Testing

|

<— Prototype)

lOK

Fabrication

Traditional Design Flow

1. Start from some informal
specification of functionality
and a set of constraints

2. Generate a more formal model

of the functionality, based on
some modeling concept. Such
model is our task graph

24 of 63

not OK

- - -+ Modeling ‘\\
l N\

i — » Select Architecture
i — Software

- Informal Specification,
Const_raints

oo

Functional
Simulation

/~ System \/

_ Mo_del)

'

Hardware and

Implementation

Testing

|

<— Prototype)

lOK

Fabrication

Traditional Design Flow

1. Start from some informal
specification of functionality
and a set of constraints

2. Generate a more formal model

of the functionality, based on
some modeling concept. Such
model is our task graph

3. Simulate the model in order to

check the functionality. If
needed make adjustments.

25 of 63

not OK

ro-T o *(Inforrréagri?;?mgatlon,) Traditional Design Flow

: ¢ \\ 1. Start from some informal

| \ . g . . .

: _ N specification of functionality

B S » Modeling V\\ and a set of constraints

Lo Functional 12- Generate a more formal model
o ; i Simulation of the functionality, based on
P! ~, :

| | / Sn%itjeer}n / some modeling concept. Such
L B model is our task graph

i i l 3. Simulate the model in order to

i i »| Select Architecture check the functionality. If needed
Lol make adjustments.

i i 4. Choose an architecture

i i Hardware and (uprocessor, buses, etc.) such
N Software: that cost limits are satisfied and,
o Implementation :

Lo — you hope, time and pow- er

i i l constraints are fulfilled.

Testing <—< Prototype >

lOK

Fabrication

26 of 63

you hope, time and pow- er
constraints are fulfilled.

! 5. Build a prototype and imple-

not OK

ro- - *(Inforrréaolri?;?mgatlon,) Traditional Design Flow

: i \\ 1. Start from some informal

| \ . g . . .

: _ N specification of functionality

B S » Modeling V\\ and a set of constraints

Lo Functional |2- Generate a more formal model
o]] Simulation of the functionality, based on
P! ~, :

L / Sn%itjeer}n / some modeling concept. Such
. - | - model is our task graph

i i l 3. Simulate the model in order to

i i »| Select Architecture check the functionality. If needed
Lol make adjustments.

i i l 4. Choose an architecture

i i Hardware and (uprocessor, buses, etc.) such

i Software that cost limits are satisfied and,
: i Implementation

Testing |«—(Prototype) ment the system.

lOK

Fabrication

27 of 63

i — » Select Architecture

*(Informal Specification,

Const_raints

oo

Modeling ‘\\
l N\

Functional
Simulation

/ System _—%

\._ Mo_del .

'

Hardware and

— Software
Implementation
x -
O
Testing <—< Prototype >
lOK
Fabrication

Traditional Design Flow

. Start from some informal

specification of functionality
and a set of constraints

. Generate a more formal model

of the functionality, based on
some modeling concept. Such
model is our task graph

. Simulate the model in order to

check the functionality. If needed
make adjustments.

. Choose an architecture

(uprocessor, buses, etc.) such
that cost limits are satisfied and,
you hope, time and pow- er
constraints are fulfilled.

. Build a prototype and imple-

ment the system.

. Verify the system: neither time

nor power constraints are sat-
isfied!!!

27 of 63

Const_raints

. *(Informal Specification,

'

Mo_del

'

\ 4

______ + Modeling \
l N

/~ System \/

Functional
Simulation

Hardware and
— Software
Implementation

not OK

. L

i — » Select Architecture

Testing <—< Prototype

)

lOK

Fabrication

Traditional Design Flow

Now you are in great trouble: you
have spent a lot of time and mon-
ey and nothing works!

0 Go back to 4, choose a
new architecture and start
a new implementation.

0 Or negotiate with the cus-
tomer on the constraints.

29 of 63

The Traditional Design Flow

m The consequences:

7 Delays in the design process
- Increased design cost

- Delays in time to market = missed market window
0 High cost of failed prototypes

7 Bad design decisions taken under time pressure

- Low quality, high cost products

30 of 63

_____ 5./ Informal Specification,
! Constraints

oo

|

|

|

|

' \

| r=----= » Modeling AN

! i I \ \\

: i i Functional
Lo Simulation
P /" System _—%

L . Model

i i 7~\lore wor
| | »[SelectArchitecture| %) Should be
P done here!
i i Hardware and :

i T e Software

o Implementation

not OK

Testing <—< Prototype >

lOK

Fabrication

31 of 63

Example

We have the system model (task graph) which has been
validated by simulation.

We decide on a certain uprocessor up1, with cost 6.

For each task the worst-case execution time (WCET) when
run on up1 is estimated.

32 of 63

Example

We have the system model (task graph) which has been
validated by simulation.

We decide on a certain uprocessor up1, with cost 6.
For each task the worst-case execution time (WCET) when

run on up1 is estimated.
task

{_V_C
S
Estimator le— HProcessor
l arch. model

WCET

33 of 63

Example

m We have the system model (task graph) which has been
validated by simulation.

m We decide on a certain uprocessor up1, with cost 6.

m Foreach task the worst-case execution time (WCET) when
run on up1 is estimated.

Task | WCET task

T, | 6

T, | 4 T

T, | 7 7
8

Estimator ._Eprocessor

Ts arch. model
T 12 l .
N WCET

Ty | 10

34 of 63

Example

We generate a schedule:

Time 0 2 4 6 §19 121fl1‘61‘55292‘22?12‘622‘%3(‘)3‘234‘136‘32‘%494‘244‘14‘64i‘§5(‘)5%54‘156‘5§6(‘)62‘64‘

T, | 12 T4 T Ts Te T, Tg

T, | 4
T, | 6
T, | 4
T, | 7
Ts | 8
Tg | 12
T, | 7
Tg | 10
350f 63

Example

We generate a schedule:

Time 0 2 4 6 §IP 121fl1‘61‘55292‘22?12‘622‘%3(‘)3‘234‘136‘32‘%494‘244‘14‘64i‘§5(‘)5%54‘156‘58‘6(‘)62‘64‘

T, | 12 T4 T Ts Te T, Tg

Using the architecture with uprocessor up1 we got a solution with:

a Execution time: 58 > 42 &

T, | 4 J Cost:6<8

T | 6 ‘
T, | 4

7

8

Ty We have to try with another architecture!
Ts

Te | 12

T, 7

36 of 63

Example

We look after a uprocessor which is fast enough: up2

37 of 63

Example

We look after a uprocessor which is fast enough: up2

For each task the WCET, when run on up2, is estimated.

38 of 63

Example

We look after a uprocessor which is fast enough: up2

For each task the WCET, when run on up2, is estimated.

Using the architecture with uprocessor up2, after generating a
schedule, we got a solution with:

0 Execution time: 28 < 42

0 Cost: 15> 8 &
T, 2
1 |
T3 2 We have to try with another architecture!
Ty 3
Ts 4
T 6
T, 3
T8 > 39 of 63

Example

We have to look for a multiprocessor solution

a In order to meet cost constraints try 2 cheap (and slow) ups:

up3: cost 3
up4: cost 2
interconnection bus: cost 1

up3

¢

np4

Bus

[40 of 63

Example

We have to look for a multiprocessor solution

a In order to meet cost constraints try 2 cheap (and slow) ups:

up3: cost 3
up4: cost 2
interconnection bus: cost 1

pp3 np4

¢ ¢ Bus

For each task the WCET, when run on up3 and up4, is estimated.

41 of 63

Example

Now we have to map the tasks to processors:

Mp3 Tl' T3, T5, T6' T7, T8'
Hp4 TZ) T4-'

If communicating tasks are mapped to different processors, they have

to communicate over the bus.

Communication time has to be estimated; it depends on the amount of
bits transferred between the tasks and on the speed of the bus.

Estimated communication times:
C1_22 1
C4_8I 1

42 of 63

Example

Mp3 Tl' T3,T5, T6l T7, T8'
Hp4 Tz, T4.

Estimated communication times:

Cq2: 1,
C4_8Z 1

We generate a schedule:

Time O 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T Sy Sy M S

up3 LT | 13 Is T 1y Ty
np4 i) Ty
bus []

Cia Cag

43 of 63

Example

Mp3 Tl' T3,T5, T6l T7, T8'
Hp4 Tz, T4.

Estimated communication times:

Cq2: 1,
C4_8Z 1

We generate a schedule:

Time 0 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T Sy Sy M S

T, 5 6
T, | 7 9
T, 5 6
T, | 8 10
Ts | 10 11
Te | 17 21
T, | 10 14
Tg | 15 19

Hp3
up4

We have exceeded the allowed execution time (42)!

T3

Ts

To

T;

Ty

T

Ty

F

!

Cio

Cag

44 of 63

2

\

4)

Task

T, 5 6
T, 7 9
T; 5 6
Ty 8 10
Ts 10 11
Te 17 21
T 10 14
Tg 15 19

Example

Try a new mapping; Ts to up4, in order to increase parallelism. Two

new communications are introduced, with estimated times:

C3_5Z 2
C5_7Z 1

We generate a schedule:

Time 0 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T S iy Sy A S

up3 [T I T Te T, Ty
np4 1 Ty Ts
bus []]

Ciz G Cy8 Cs.7

The execution time is still 62, as before!

45 of 63

Example

Try a new mapping; Ts to up4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

C3_5Z 2
C5_7Z 1

(There exists a better schedule!)

Time O 2 4 6 810 1214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
e T T S iy Sy A S

upd LT | 13 To T, Ty
Mp 4 T2 T5 T4
bus []]

Ciz G Cs.7 Cy8

46 of 63

Example

Try a new mapping; Ts to up4, in order to increase parallelism.

Two new communications are introduced, with estimated times:

D\
Y | Cs.5: 2

2 Cs.7: 1

8 6’ here exists a better schedule!)

e 1 0246 22 24 05

Tas | Time © 240 810 214161820 22426 20303 3436 30 40 4445 48 50 52343058 0 2
T, 3 6 up3 N Ts T, Tq
22 ’ ? up4 T Ts Ty
T 5 6
Ts | 10 11
Te | 17 21 Execution time: 52 > 42 &?
T; | 10 14 Cost:6 <8
Tg 15 19

Example

up3 np4

¢ ¢ Bus

m Possible solutions:

a9 Change pproc. up3 with faster one = cost limits exceeded

48 of 63

Example

up3 up4

¢ ¢ Bus
$

ASIC

0 Change pproc. up3 with faster one = cost limits exceed

m Possible solutions:

o Implement part of the functionality in hardware as an ASIC Cost
of ASIC: 1

49 of 63

Example

up3 up4

¢ ¢ Bus
$

ASIC

0 Change pproc. up3 with faster one = cost limits exceed
o Implement part of the functionality in hardware as an ASIC

Possible solutions:

New architecture Cost of
ASIC: 1

Mapping
up3: T1, T3, T6, T7.
up4: To, Ty, T5.
ASIC: Tg with estimated WCET= 3
a9 New communication, with estimated time: C7_g: 1

50 of 63

WCET
Task
up3 | up4
T, 5 6
T, 7 9
Ts 5 6
Ty 8 10
Ts 10 11
T 17 21
T, 10 14
Ty 15 19

m Mapping

up3: T4, T3, Te, T7.

Example

up3

up4

¢ Bus

upd: To, Ty, Ts.
ASIC: Tg with estimated WCET=3

¢

ASIC

0 New communication, with estimated time: C7.
8. 1

4 6 810 1‘2 lfl 1‘6 1§ 29 %2 %4 2§ 2§ 39 3? 3f1 3§ 3§ 49 4? 4fl 4§ 4§ 59 5? Sfl 5§ 5§ 69 6% 64}
| |

To

T;

Ts

14

Cs.7

51 of 63

Cs8 Cr3

T
8
WCET

Task

up3 | up4
T, 5 6
T, 7 9
Ts 5 6
Ty 8 10
Ts 10 11
T 17 21
T, 10 14
Ty 15 19

solution with:

¢

ASIC

Using this architecture we got a

0 Execution time: 41 <42

¢ Bus

0 Cost: 7<8
Time 0 2 4 6 8101214 161820 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 6
up3 T, T, To T,
up4 T, Ts Ty
ASIC T
bus D D 52 of 63
Ciz2 Css Cs7 Cys Crg

What did we achieve? Example

a9 We have selected an architecture.
7 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.

53 of 63

What did we achieve? Example

0 We have selected an architecture.
0 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.

(

-

" Extremely important!!!

Nothing has been built yet.

\AII decisions are based on simulation and estimation.

-

54 of 63

What did we achieve? Example

0 We have selected an architecture.
0 We have mapped tasks to the processors and ASIC.

0 We have elaborated a a schedule.

~ N
" Extremely important!!!)

Nothing has been built yet.

All decisions are based on simulation and estimation.

-)

- J

m Now we can go and do the software and hardware implementation, with a high
degree of confidence that we get a correct prototype.

55 of 63

> Informal Specification,
Constraints 1§

Y

\

_____________ > Modeling

\
A\

3\

Arch. Selection

Functional
Simulation

System
archltectu re

Y

Estimation

-
)Z o

Scheduling

-—

(Mapped and

scheduled
not OK K model

not OK

*OK

. Software

Hardware and

Implementation

Y

Testing

<_< Prototype

)

not OK

yOK

Fabrication

What is the essential difference
compared to the “traditional”
design flow?

56 of 63

Informal Specification,

S —— - >< Constraints D\ What is the essential difference

i " \ compared to the “traditional”
: ' i ?
A »| _ Modeling ~—_ MR ' design flow
i ' | N FF‘;S};E 0 The inner loop which is per-
N) formed before the hardware/
— : System
- [ArCh. Selection | < model %\ software implementation.
\
5 St*em * N This loop is performed several
(areh¥tecture > > Mapping — times as part of the design
/ ¥ space exploration. Different
Estimation Scheduling | architectures, mappings and
schedules are explored, be- fore
(Mapped and the actual implementation and
—TOK K scg%%uelled]m prototyping.
*OK Y, 1 We get highly optimized good
Hardware and quality solutions in short time.
- | ?oftware_ We have a good chance that
mp emintat'on the outer loop, including pro-
; totyping, is not repeated.
o Testing <_< Prototype >

yOK

Fabrication 37of 63

The Design Flow

m Formal verification

0 Itis impossible to do an exhaustive verification by simulation! Especially
for safety critical systems formal verification is needed.

m Hardware/Software codesign

a3 During the mapping/scheduling step we also decide what is going to be
executed on a programmable processor (software) and what is going into
hardware (ASIC, FPGA).

a3 During the implementation phase, hardware and software components have
to be developed in a coordinated way, keeping care of their consistency
(hardware/software cosimulation)

58 of 63

e >Cnformal Specification, >‘
i Const;aints ~o
1 RN
S - & Modeling |<e——— Functional
] 4 Simulation
[Arch. Selecti System model Formal
— [mlArch. Selection | System model >\ Lol
> Y AN
w System . N
- architecture / Mapping
= - Estimation 4 Scheduling |<¢—
5]
- not OK a Mappe*d and]—nﬂﬂﬁ—
>
| OK Formal
- Verification
Y (Softw. model ~>~_; Simulation |<e—~ Hardw. model)
* - Softw. Generation Hardw. Synthesis
: [T +
é: (Softw. blocks 3:; Simulation <_<Hardw. blocks >
o
E Testing Prototype
OK
+ not OK * :
Fabrication

59 of 63

System Level ——»

|/

System Level Design Flow

C

Informal Specification

Constraints

Arch. Selection

System

architicture
| Estimation 4

not OK
«

<Softw. model >_>

,)‘K

Modeling |<—— Functional
* S Simulation
~
<« Systemmodel > Formal
d * Y N Verification
-~

. \\

>—> Mapping |<——

Scheduling |l«g—

Mapped and not OK
heduled model)\ Slmulatlon
Verification

Simulation

(This iIs what we are interested in, in this courseD

60 of 63

Course Topics at a Glance

Introduction: Embedded Systems and Their Design (just finished!)

Models of Computation and Specification Languages
0 Dataflow Models, Petri Nets, Discrete Event Models, Synchronous
Finite State Machines & Synchronous Languages, Globally
Asynchronous Locally Synchronous Systems,

Timed Automata, Hybrid Automata.

Architectures and Platforms for Embedded Systems Design

0 General Purpose vs. Application Specific Architectures,
Component and Platform-based Design, Reconfigurable
Systems, Functionality Mapping.

Real-Time Embedded Systems
System-Level Power/Energy Optimization

61 of 63

Lab Assignment 1

Modeling and simulation with System C

anormal Specificatio
Constraints

n,
>

\-.

Modeling

-

)

Functional
Simulation

Arch. Selectio |n<—<System' modeljlrp»

Formal
Verification

~

System

Mapping

Y

architecture
| Eshmahonﬁ

Scheduling

System Level -

not OK
T (e

Mapped and ~\not OK_

Y <Softw. model }—»

heduled model J\

~ffp—

-—

~

Formal

Simulation
Verification

Simulation

-« Hardw. model_)

62 of 63

Lab Assignment 2

Formal verification with UPPAAL (TDTSO07 only)

Constraints

(Informal Specification,>‘

~
\-.

T Functional
odeling “ Simulation

| ' \\ Formal
»|Arch. Selectior| |« System modeD—r\P Verification

~

Y

Y
System

Mapping re———

Y

\architicture/' -
| Estimationd

Scheduling ~a——

N

System Level -

not OK
T (e

Mapped and
heduled mod

~.nhot OK
\ Simulation

Y (Softw. model)—»

Simulation

Formal
Verification

-« Hardw. model_)

63 of 63

Lab Assignment 3

Design space exploration with an MPARM simulator.

< Informal Specification,>‘
Constraints ~ o

y

Modeling <—— Functional

L Simulation
- i /o 4 \\ Formal
~ »Arch. Selection <« System modeD—Tp Verification
: System * N
- \architicture Map*plng A
i | Estimation£ Scheduling |a——
> ot OK “Mapped and 1oL OK
4 scheduled modeJ o

Formal
Verification

Y (Softw. model)—| Simulation |-~ Hardw. model)

64 of 63

	Slide 1: System Design and Methodology / Embedded Systems Design I. Modeling and Design of Embedded Systems
	Slide 2: Course Information
	Slide 3: Course Information
	Slide 4: Course Information
	Slide 5: EMBEDDED SYSTEMS AND THEIR DESIGN
	Slide 6: That’s how we use microprocessors
	Slide 7: What is an Embedded System?
	Slide 8: What is an Embedded System?
	Slide 9: What is an Embedded System?
	Slide 10: Two Typical Implementation Architectures
	Slide 11: Two Typical Implementation Architectures
	Slide 12: The Software Component
	Slide 13: Characteristics of Embedded Applications
	Slide 14: Time constraints
	Slide 15: Power constraints
	Slide 16: Cost constraints
	Slide 17: Safety
	Slide 18: Short time to market
	Slide 19: Why is Design of Embedded Systems Difficult?
	Slide 20: Why is Design of Embedded Systems Difficult?
	Slide 21: An Example
	Slide 22: Traditional Design Flow
	Slide 23: Traditional Design Flow
	Slide 24: Traditional Design Flow
	Slide 25: Traditional Design Flow
	Slide 26: Traditional Design Flow
	Slide 27: Traditional Design Flow
	Slide 28: Traditional Design Flow
	Slide 29: Traditional Design Flow
	Slide 30: The Traditional Design Flow
	Slide 31
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Example
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Example
	Slide 54: Example
	Slide 55: Example
	Slide 56: What is the essential difference compared to the “traditional” design flow?
	Slide 57: What is the essential difference compared to the “traditional” design flow?
	Slide 58: The Design Flow
	Slide 59
	Slide 60: System Level Design Flow
	Slide 61: Course Topics at a Glance
	Slide 62: Lab Assignment 1
	Slide 63: Lab Assignment 2
	Slide 64: Lab Assignment 3

